Tritonia

From NeuronBank
Jump to: navigation, search

Tritonia is a nudibranch mollusc. See scholarpedia.org/article/Tritonia.

Schematic of the Tritonia central ganglia showing the 3 major ganglia: Ce = Cerebral, Pl = Pleural, Pd = Pedal. The nerves leaving each ganglion are numbered. st = statocyst.

See the Tritonia Ontology for definitions of objects, attributes, and attribute values used in the Tritonia Branch of NeuronBank.


Contents

Identified neurons

References


A - C

  1. F. D. Abraham and A. O. D. Willows. Plasticity of a fixed action pattern in the sea slug Tritonia diomedia [sic]. Comm.Behav.Biol. 6:271-280, 1971.
  2. T. A. Adzhimolaev, S. M. Bezruchko, and N. I. Vozhenina. [Effect of electric stimulation on the incorporation of H3-uridine and H3-lysine into cells of Tritonia isolated nervous system]. Biofizika 17 (1):77-84, 1972.
  3. T. A. Adzhimolaev, R. A. Murav'ev, and V. V. Rogovin. Electron cytochemistry of acid phosphatase in giant neurons of the mollusk Tritonia diomedia. Neurosci Behav.Physiol 6 (2):131-138, 1973.
  4. T. A. Adzhimolaev, R. A. Murav'ev, and V. V. Rogovin. Electron cytochemistry of acid phosphatase in giant neurons of the mollusk Tritonia diomedia. Neurosci.Behav.Physiol 6 (2):131-138, 1973.
  5. R. A. Allmon and K. P. Sebens. Feeding biology and ecological impact of an introduced nudibranch, Tritonia plebeia, New England, USA. Mar.Biol. 99:375-386, 1988.
  6. W. W. Anderson. Endogenous bursting in Tritonia neurons at low temperature. Brain Res. 103 (2):407-411, 1976.
  7. V. F. Antonov, G. A. Kurella, and L. G. Iaglova. [Distribution of Na22 between cytoplasm and nucleus in giant neurons of Tritonia diomedia Bergh]. Biofizika 10 (6):1087-1088, 1965.
  8. V. F. Antonov, G. A. Kurella, and L. G. Iaglova. [On the localization of Na22 in the nucleoli of giant neurons of Tritonia diomedia Bergh]. Biofizika 13 (2):336-338, 1968.
  9. G. Audesirk. Central neuronal control of cilia in Tritonia diamedia [sic]. Nature 272 (5653):541-543, 1978.
  10. G. Audesirk, R. E. McCaman, and A. O. D. Willows. The role of serotonin in the control of pedal ciliary activity by identified neurons in Tritonia diomedia [sic]. Comp.Biochem.Physiol. 62C:87-91, 1979.
  11. G. Audesirk and T. Audesirk. Complex mechanoreceptors in Tritonia diomedea: 2. Neuronal correlates of a change in behavioral responsiveness. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 141:111-122, 1980.
  12. G. Audesirk and T. Audesirk. Complex mechanoreceptors in Tritonia diomedea: 1. Responses to mechanical and chemical stimuli. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 141:101-110, 1980.
  13. T. E. Audesirk. Oral mechanoreceptors in Tritonia diomedea 1. Electrophysiological properties and location of receptive fields. J.Comp.Physiol. 130 (1):71-78, 1979.
  14. T. E. Audesirk. Oral mechanoreceptors in Tritonia diomedea 2. Role in feeding. J.Comp.Physiol. 130 (1):79-86, 1979.
  15. M. J. Baltzley and K. J. Lohmann. Comparative Study of TPep-Like Immunoreactive Neurons in the Central Nervous System of Nudibranch Molluscs. Brain Behav.Evol. 72 (3):192-206, 2008.
  16. J. C. Beck, J. A. Murray, A. O. D. Willows, and M. S. Cooper. Computer-assisted visualizations of neural networks: expanding the field of view using seamless confocal montaging. J.Neurosci.Methods 98 (2):155-163, 2000.
  17. J. C. Beck, M. S. Cooper, and A. O. D. Willows. Immunocytochemical localization of pedal peptide in the central nervous system of the gastropod mollusc Tritonia diomedea. J.Comp.Neurol. 425 (1):1-9, 2000.
  18. R. Bergh. No. 10. - Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U.S. Fish Commission steamer "Albatross" during 1891, Lieut. Commander Z.L. Tanner, U.S.N., commanding. XIII Die Opisthobranchien. Bulletin of the Museum of Comparative Zoology, Harvard 25 (10):125-233, 1894.
  19. H. Bertsch and A. Kerstitch. Distribution and radular morphology of various nudibranchs (Gastropoda: Opisthobranchia) from the Gulf of California, Mexico. Veliger 26:264-273, 1984.
  20. H. Bertsch and Osuna A. Mozqueira. A new species of Tritonia (Nudibranchia) from southern California (USA) and Baja California (Mexico). Nautilus 100:46-49, 1986.
  21. S. M. Bezruchko, N. I. Vozhenina, T. A. Adzhimolaev, and K. G. Gazarian. [Localization and kinetics of RNA and protein synthesis in the isolated nervous system of Tritonia diomedia Bergh]. Biofizika 15 (6):1036-1043, 1970.
  22. C. Birkeland. Interactions between a Sea Pen and Seven of Its Predators. Ecological Monographs 44 (2):211-232, 1974.
  23. V. L. BOROVIAGIN, D. A. Sakharov, and B. N. Veprintsev. [INTRANUCLEAR INCLUSIONS IN NEURONS OF TRITONIA DIOMEDIA BERGH.]. Biofizika 10:98-99, 1965.
  24. G. Brown, W. N. Frost, and P. A. Getting. Habituation of the Tritonia escape swim involves multiple behavioral modifications. Soc.Neurosci.Abstr. 14:838, 1988.
  25. G. D. Brown and A. O. D. Willows. Dissecting the memory for sensitization in Tritonia. Soc.Neurosci.Abstr. 17:549, 1991.
  26. G. D. Brown. Heterostimic enhancement of a not so fixed action pattern. Neth.J.Zool. 44:184-199, 1994.
  27. G. D. Brown, W. N. Frost, and P. A. Getting. Habituation and iterative enhancement of multiple components of the Tritonia swim response. Behavioral Neuroscience 110 (3):478-485, 1996.
  28. G. D. Brown. Isolated-brain parallels to simple types of learning and memory in Tritonia. Physiol.Behav. 62 (3):509-518, 1997.
  29. G. D. Brown. Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition. Behav.Brain Res. 95 (2):151-165, 1998.
  30. G. D. Brown, S. Yamada, and T. J. Sejnowski. Independent component analysis at the neural cocktail party. Trends Neurosci. 24 (1):54-63, 2001.
  31. G. D. Brown. The role of serotonin in Tritonia diomedea. Am.Zool. 41 (4):976-982, 2001.
  32. P. J. Bryan, J. B. McClintock, and B. J. Baker. Population biology and antipredator defenses of the shallow- water Antarctic nudibranch Tritoniella belli . Mar.Biol. 132 (2):259-265, 1998.
  33. A. G. Bulloch and A. O. Willows. Physiological basis of feeding behavior in Tritonia diomedea. III. Role of depolarizing afterpotentials. J.Neurobiol. 12 (5):515-532, 1981.
  34. G. A. Buznikov, L. A. Nikitina, E. E. Voronezhskaya, V. V. Bezuglov, A. O. D. Willows, and L. P. Nezlin. Localization of serotonin and its possible role in early embryos of Tritonia diomedea (Mollusca: Nudibranchia). Cell and Tissue Research 311 (2):259-266, 2003.
  35. S. D. Cain, J. H. Wang, and K. J. Lohmann. Immunochemical and electrophysiological analyses of magnetically responsive neurons in the mollusc Tritonia diomedea. J Comp Physiol A Neuroethol.Sens.Neural Behav.Physiol:1-11, 2005.
  36. R. J. Calin-Jageman, M. J. Tunstall, B. D. Mensh, P. S. Katz, and W. N. Frost. Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J.Neurophysiol. 98 (4):2382-2398, 2007.
  37. R. Chase. The initiation and conduction of action potentials in the optic nerve of Tritonia. J.Exp.Biol. 60 (3):721-734, 1974.
  38. R. Chase. The electrophysiology of photoreceptors in the nudibranch mollusc, Tritonia diomedia. J.Exp.Biol. 60 (3):707-719, 1974.
  39. R. Chase. The suppression of excitatory synaptic responses by ethyl alcohol in the nudibranch mollusca, Tritonia diomedia. Comp Biochem.Physiol C. 50 (1):37-40, 1975.
  40. Byung Lae Choe and Jong Rak Lee. Opisthobranchs (Mollusca: Gastropoda) from Ullung and Dog-do Islands, Korea. Korean-Journal-of-Zoology 37 (3):352-376, 1994.
  41. S. Clemens and P. S. Katz. G protein-coupled receptors are required for the generation of the swim motor pattern in Tritonia and may mediate modulatory actions of serotonergic CPG neurons. Soc.Neurosci.Abstr. 25:1646, 1999.
  42. S. Clemens and P. S. Katz. Cyclic AMP mediates some actions of serotonergic neurons within the Tritonia swim CPG through a PKA-independent mechanism. Soc.Neurosci.Abstr. 26:#163.13, 2000.
  43. S. Clemens and P. S. Katz. Photolysis of intracellularly injected caged cyclic AMP rapidly affects the Tritonia swim CPG. Soc.Neurosci.Abstr. 27:306.29, 2001.
  44. S. Clemens and P. S. Katz. Identified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors. J.Neurophysiol. 85 (1):476-479, 2001.
  45. S. Clemens, C. P. Lynn-Bullock, A. Sakurai, and P. S. Katz. Localization of function in a central pattern generator. Eur.J.Neurosci. 16S:497, 2002.
  46. S. Clemens and P. S. Katz. G Protein signaling in a neuronal network is necessary for rhythmic motor pattern production. J.Neurophysiol. 89:762-772, 2003.
  47. S. Clemens, R. Calin-Jageman, A. Sakurai, and P. S. Katz. Altering cAMP levels within a central pattern generator modifies or disrupts rhythmic motor output. J.Comp Physiol [A] 193 (12):1265-1271, 2007.
  48. R. P. Croll, D. Y. Boudko, and M. G. Hadfield. Histochemical survey of transmitters in the central ganglia of the gastropod mollusc Phestilla sibogae. Cell and Tissue Research 305 (3):417-432, 2001.
  49. Greg Cronin, Mark E. Hay, William Fenical, and Niels Lindquist. Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. Marine-Ecology-Progress-Series 119 (1-3):177-189, 1995.


D - G

  1. N. R. Dargouth, A. Sakurai, R. J. Butera, and P. S. Katz. Computer simulations and dynamic clamp experiments support a role for a 4-AP-sensitive current in serotonin-induced spike narrowing leading to synaptic depression. Soc.Neurosci.Abstr. 2004.(In Press)
  2. P. S. Dickinson. Homologous neurons control movements of diverse gill types in nudibranch mollusks. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 131:277-283, 1979.
  3. D. A. Dorsett. Giant neurons and axon pathways in the brain of Tritonia. J.Exp.Biol 46:137-151, 1967.
  4. D. A. Dorsett, A. O. D. Willows, and G. Hoyle. Centrally generated nerve impulse sequences determining swimming behavior in Tritonia. Nature 224:711-712, 1969.
  5. D. A. Dorsett, A. O. D. Willows, and G. Hoyle. The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain. J.Neurobiol. 4:287-300, 1973.
  6. D. A. Dorsett. Neuronal homologies and the control of branchial tuft movements in two species of Tritonia. J.Exp.Biol. 61 (3):639-654, 1974.
  7. D. A. Dorsett and A. O. D. Willows. Interactions between neurons mediating tuft withdrawal in Tritonia hombergi. J.Exp.Biol. 61 (3):655-666, 1974.
  8. D. A. Dorsett. THE MORPHOLOGY AND PHYSIOLOGICAL PROPERTIES OF THE SMALL WHITE NEURONS IN THE BUCCAL GANGLIA OF TRITONIA-HOMBERGI. J.Exp.Biol. 122:237-256, 1986.
  9. D. J. Fickbohm and P. S. Katz. Serotonin precursor treatment and behavioral training alter swim motor pattern production in Tritonia. Soc.Neurosci.Abstr. 24:358, 1998.
  10. D. J. Fickbohm and P. S. Katz. Manipulation of 5-HT content alters the modulatory actions of serotonergic neurons in the Tritonia swim CPG. Soc.Neurosci.Abstr. 25:168, 1999.
  11. D. J. Fickbohm and P. S. Katz. Paradoxical actions of the serotonin precursor 5-hydroxytryptophan on the activity of identified serotonergic neurons in a simple motor circuit. J.Neurosci. 20 (4):1622-1634, 2000.
  12. D. J. Fickbohm, N. Spitzer, and P. S. Katz. Serotonin homeostasis in the brain of Tritonia diomedea. Soc.Neurosci.Abstr. 26:#343.5, 2000.
  13. D. J. Fickbohm, C. P. Lynn-Bullock, N. Spitzer, H. K. Caldwell, and P. S. Katz. Localization and quantification of 5-hydroxytryptophan and serotonin in the central nervous systems of Tritonia and Aplysia. J Comp Neurol. 437 (1):91-105, 2001.
  14. D. J. Fickbohm, N. Spitzer, and P. S. Katz. Pharmacological manipulation of serotonin levels in the nervous system of the opisthobranch Mollusc Tritonia diomedea. Biol.Bull. 209 (1):67-74, 2005.
  15. L. H. Field and D. L. MacMillan. An electrophysiological and behavioral study of sensory responses in Tritonia (Gastropoda, Nudibranchia). Mar.Behav.Physiol. 3:171-185, 1973.
  16. K. T. Fielman and A. G. Marsh. Genome complexity and repetitive DNA in metazoans from extreme marine environments. Gene 362:98-108, 2005.
  17. W. N. Frost and P. A. Getting. Habituation of escape swimming in Tritonia appears to involve multiple sites of circuit modification. Soc.Neurosci.Abstr. 13:815, 1987.
  18. W. N. Frost, G. Brown, and P. A. Getting. Sensitization of the Tritonia escape swim: behavioral and cellular modifications. Soc.Neurosci.Abstr. 14:607, 1988.
  19. W. N. Frost and P. A. Getting. Self-tuning by a neural circuit: The DSI neurons of the Tritonia escape swim central pattern generator both modulate and mediate connections in the swim circuit. Soc.Neurosci.Abstr. 15:1118, 1989.
  20. W. N. Frost and P. S. Katz. Identification of Tritonia "ramp" interneuron: DRI neuron relays sensory input to the escape swim CPG and also participates in rhythm generation. Soc.Neurosci.Abstr. 20:1201, 1994.
  21. W. N. Frost and P. S. Katz. Circuit modifications associated with reconfiguration of the Tritonia escape swim network by subthreshold stimuli. Soc.Neurosci.Abstr. 22:2047, 1996.
  22. W. N. Frost and P. S. Katz. Single neuron control over a complex motor program. Proc.Natl.Acad.Sci.U.S.A. 93 (1):422-426, 1996.
  23. W. N. Frost, G. D. Brown, and P. A. Getting. Parametric features of habituation of swim cycle number in the marine mollusc Tritonia diomedea. Neurobiol.Learning and Mem. 65:125-134, 1996.
  24. W. N. Frost, J. R. Jr. Lieb, M. J. Tunstall, B. D. Mensh, and P. S. Katz. Integrate-and-fire simulations of two molluscan neural circuits. In: Neurons, Networks, and Motor Behavior, edited by P. S. G. Stein, A. I. Selverston, D. G. Stuart, and S. Grillner, Cambridge, MA:MIT Press, 1997, p. 173-179.
  25. W. N. Frost, C. L. Brandon, and D. L. Mongeluzi. Sensitization of the Tritonia escape swim. Neurobiol.Learning and Mem. 69 (2):126-135, 1998.
  26. W. N. Frost, T. A. Hoppe, J. Wang, and L. M. Tian. Swim initiation neurons in Tritonia diomedea. Am.Zool. 41 (4):952-961, 2001.
  27. W. N. Frost, L. M. Tian, T. A. Hoppe, D. L. Mongeluzi, and J. Wang. A cellular mechanism for prepulse inhibition. Neuron 40 (5):991-1001, 2003.
  28. W. N. Frost and J. Wang. Amphetamine elicits enhanced activity and oral sterotypies in the marine mollusk Tritonia. Soc.Neurosci.Abstr. 917.6, 2005.
  29. W. N. Frost, C. L. Brandon, and C. Van Zyl. Long-term habituation in the marine mollusc Tritonia diomedea. Biol.Bull. 210 (3):230-237, 2006.
  30. W. N. Frost, J. Wang, and C. J. Brandon. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity. J Neurosci.Methods 162 (2):148-154, 2007.
  31. M. R. Gaston. Neuropeptide TPep action on salivary duct ciliary beating rate in the nudibranch mollusc Tritonia diomedea. Invert.Neurosci 3 (4):327-333, 1998.
  32. P. A. Getting. Tritonia swimming: triggering of a fixed action pattern. Brain Res. 96:128-133, 1975.
  33. P. A. Getting. Afferent neurons mediating escape swimming of the marine mollusc, Tritonia. J.Comp.Physiol. 110:271-286, 1976.
  34. P. A. Getting. Neuronal organization of escape swimming in Tritonia. J.Comp.Physiol.A 121:325-342, 1977.
  35. P. A. Getting, P. R. Lennard, and R. I. Hume. Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J.Neurophysiol. 44:151-164, 1980.
  36. P. A. Getting. Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. J.Neurophysiol. 46:65-79, 1981.
  37. P. A. Getting. Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J.Neurophysiol. 49:1036-1050, 1983.
  38. P. A. Getting. Neural control of swimming in Tritonia. In: Symposia of the Society for Experimental Biology, No.37, Neural Origin of Rhythmic Movements, edited by A. Roberts and B. L. Roberts, New York:Cambridge Univ. Press, 1983, p. 89-128.
  39. P. A. Getting. Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J.Neurophysiol. 49:1017-1035, 1983.
  40. P. A. Getting and M. S. Dekin. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator. J.Neurophysiol. 53:466-480, 1985.
  41. P. A. Getting and M. S. Dekin. Tritonia swimming: a model system for integration within rhythmic motor systems. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York:Plenum Press, 1985, p. 3-20.
  42. P. A. Getting, A. D. McClellan, and M. Li. Dual action of serotonin on swimming in Tritonia. Soc.Neurosci.Abstr. 11:1023, 1985.
  43. P. A. Getting. Understanding central pattern generators: Insights gained from the study of invertebrate systems. In: Neurobiology of Vertebrate Locomotion, edited by S. Grillner, P. S. G. Stein, D. G. Stuart, H. Forssberg, and R. M. Herman, Houndmills:MacMillan Press, LTD, 1986, p. 231-244.
  44. P. A. Getting. Emerging principles governing the operation of neural networks. Annu.Rev.Neurosci. 12:185-204, 1989.
  45. P. A. Getting. Reconstruction of small neural networks. In: Methods in Neuronal Modeling: From Synapses to Networks, edited by C. Koch and I. Segev, Cambridge, MA:MIT Press, 1989, p. 171-194.
  46. P. A. Getting. A network oscillator underlying swimming in Tritonia. In: Neuronal and Cellular Oscillators, edited by J. W. Jacklet, New York:Marcel Dekker, Inc, 1989, p. 215-236.
  47. T. M. Gosliner and M. T. Ghiselin. A new species of Tritonia (Opisthobranchia: Gastropoda) from the Caribbean Sea. Bull.Mar.Sci. 40:428-436, 1987.
  48. S. Grillner and P. Wallén. Central pattern generators for locomotion with special reference to vertebrates. Annu.Rev.Neurosci. 8:233-261, 1985.

H - M

  1. R. D. Hangartner and P. Cull. A ternary logic model for recurrent neuromime networks with delay. Biol.Cybernetics 73 (2):177-188, 1995.
  2. E. Harth and N. S. Lewis. The escape of Tritonia: dynamics of a neuromuscular control mechanism. J.Theor.Biol. 55 (1):201-228, 1975.
  3. E. S. Hill and P. S. Katz. Role of membrane potential in calcium signaling during rhythmic bursting in tritonia swim interneurons. J.Neurophysiol. 97 (3):2204-2214, 2007.
  4. E. S. Hill, A. Sakurai, and P. S. Katz. Transient enhancement of spike-evoked calcium signaling by a serotonergic interneuron. J.Neurophysiol. 100 (5):2919-2928, 2008.
  5. E. S. Hill, C. Moore-Kochlacs, S. K. Vasireddi, T. J. Sejnowski, and W. N. Frost. Validation of Independent Component Analysis for rapid spike sorting of optical recording data. J.Neurophysiol., 2010. 20861441
  6. R. Hochberg. Serotonin-like Immunoreactivity in the Central and Peripheral Nervous Systems of the Interstitial Acochlidean Asperspina sp. (Opisthobranchia). Biol.Bull. 213 (1):43-54, 2007.
  7. T. A. Hoppe, D. L. Mongeluzi, and W. N. Frost. Evidence for afferent neuron synaptic depression in habituation of the escape swim response in Tritonia diomedea. Soc.Neurosci.Abstr. 23:1332, 1997.
  8. G. Hoyle and A. O. D. Willows. Neuronal basis of behavior in Tritonia. II. Relationship of muscular contraction to nerve impulse pattern. J.Neurobiol. 4:239-254, 1973.
  9. R. I. Hume, P. A. Getting, and M. A. Del Beccaro. Motor organization of Tritonia swimming. I. Quantitative analysis of swim behavior and flexion neuron firing patterns. J.Neurophysiol. 47:60-74, 1982.
  10. R. I. Hume and P. A. Getting. Motor organization of Tritonia swimming. II. Synaptic drive to flexion neurons from premotor interneurons. J.Neurophysiol. 47:75-90, 1982.
  11. R. I. Hume and P. A. Getting. Motor organization of Tritonia swimming. III. Contribution of intrinsic membrane properties to flexion neuron burst formation. J.Neurophysiol. 47:91-102, 1982.
  12. W. J. Hurst, L. L. Moroz, M. U. Gillette, and R. Gillette. Nitric oxide synthase imunolabeling in the molluscan CNS and peripheral tissues. Biochem.Biophys.Res.Commun. 262 (2):545-548, 1999.
  13. J. Jing and R. Gillette. Neuronal elements that mediate escape swimming and suppress feeding behavior in the predatory sea slug Pleurobranchaea. J.Neurophysiol. 74 (5):1900-1910, 1995.
  14. J. Jing and R. Gillette. Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. J.Neurophysiol. 81 (2):654-667, 1999.
  15. J. Jing, F. S. Vilim, and K. R. Weiss. Interactions between serotonergic neurons in the locomotor and feeding networks in Aplysia. Soc.Neurosci.Abstr. 289.10, 2007.
  16. P. S. Katz and W. N. Frost. Serotonin from DSI neurons acts as both a neurotransmitter and intrinsic neuromodulator in the Tritonia escape swim CPG circuit. Soc.Neurosci.Abstr. 19:1700, 1993.
  17. P. S. Katz and W. N. Frost. Evidence that serotonergic neuromodulation intrinsic to the Tritonia swim CPG is due to presynaptic enhancement of release. Soc.Neurosci.Abstr. 20:1201, 1994.
  18. P. S. Katz, P. A. Getting, and W. N. Frost. Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367:729-731, 1994.
  19. P. S. Katz and W. N. Frost. Intrinsic neuromodulation in the Tritonia swim CPG: The serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2. J.Neurosci. 15 (9):6035-6045, 1995.
  20. P. S. Katz and W. N. Frost. Intrinsic neuromodulation in the Tritonia swim CPG: Serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons. J.Neurophysiol. 74:2281-2294, 1995.
  21. P. S. Katz, M. J. Tunstall, and W. N. Frost. Serotonergic neuromodulation intrinsic to the Tritonia swim CPG may be crucial for reconfiguration of the network into a rhythmic pattern generating circuit. In: Nervous Systems and Behavior: Proceedings of the 4th International Congress of Neuroethology, edited by M. Burrows, T. Matheson, P. L. Newland, and H. Schuppe, Stuttgart:Georg Thieme Verlag, 1995, p. 170.
  22. P. S. Katz and W. N. Frost. Intrinsic neuromodulation: Altering neuronal circuits from within. Trends Neurosci. 19 (2):54-61, 1996.
  23. P. S. Katz and W. N. Frost. The dorsal swim interneurons of the Tritonia escape swim CPG significantly reduce spike frequency adaptation in CPG neuron C2: Possible role in network reconfiguration. Soc.Neurosci.Abstr. 22:2047, 1996.
  24. P. S. Katz and L. M. Tian. Serotonin released from Tritonia CPG neurons is necessary and sufficient for evoking a swim motor program. Soc.Neurosci.Abstr. 23:1047, 1997.
  25. P. S. Katz and W. N. Frost. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator. J.Neurosci. 17 (20):7703-7713, 1997.
  26. P. S. Katz. Extrinsic and intrinsic neuromodulation of motor systems: physiological mechanisms for behavioural flexibility. J.Physiol.(Lond) 504.P:2S, 1997.
  27. P. S. Katz. Neuromodulation Intrinsic to the Central Pattern Generator for Escape Swimming in Tritonia. Ann.N.Y.Acad.Sci. 860:181-188, 1998.
  28. P. S. Katz. Comparison of extrinsic and intrinsic neuromodulation in two central pattern generator circuits in invertebrates. Exp.Physiol. 83 (3):281-292, 1998.
  29. P. S. Katz. Short-term synaptic plasticity suggests that 5-HT synthesis and reuptake affect separate transmitter pools at a serotonergic synapse in Tritonia. Soc.Neurosci.Abstr. 27:13.10, 2001.
  30. P. S. Katz, D. J. Fickbohm, and C. P. Lynn-Bullock. Evidence that the swim central pattern generator of Tritonia arose from a non-rhythmic neuromodulatory arousal system: Implications for the evolution of specialized behavior. Am.Zool. 41:962-975, 2001.
  31. P. S. Katz, A. Sakurai, S. Clemens, and D. Davis. Cycle period regulation in the Tritonia escape swim. Soc.Neurosci.Abstr. 67.5, 2002.
  32. P. S. Katz, A. Sakurai, S. Clemens, and D. Davis. Cycle Period of a Network Oscillator Is Independent of Membrane Potential and Spiking Activity in Individual Central Pattern Generator Neurons. J.Neurophysiol. 92 (3):1904-1917, 2004.
  33. P. S. Katz. Tritonia. Scholarpedia 2 (6):3504, 2007.
  34. P. S. Katz. Tritonia swim network. Scholarpedia 4 (5):3638, 2009.
  35. P. S. Katz. The Tritonia central pattern generator. In: Handbook of Microcircuits, edited by G. Shepherd and S. Grillner, New York:Oxford University Press, 2010, p. 443-449.
  36. P. S. Katz, R. Calin-Jageman, A. Dhawan, C. Frederick, S. Guo, R. Dissanayaka, N. Hiremath, W. Ma, X. Shen, H. C. Wang, H. Yang, S. Prasad, R. Sunderraman, and Y. Zhu. NeuronBank: A Tool for Cataloging Neuronal Circuitry. Front Syst.Neurosci 4:9, 2010.
  37. S. C. Kempf and A. O. D. Willows. Laboratory culture of the nudibranch Tritonia diomedea Bergh (Tritonidae: Opisthobranchia) and some aspects of its behavioral development. J.Exp.Mar.Biol.Ecol. 30:261-276, 1977.
  38. S. C. Kempf, B. Masinovsky, and A. O. D. Willows. A simple neuronal system characterized by a monoclonal antibody to SCP neuropeptides in embryos and larvae of Tritonia diomedea (Gastropoda, Nudibranchia). J.Neurobiol. 18:217-236, 1987.
  39. S. C. Kempf. Serotonergic, sensory modifications in the apical ganglion during development to metamorphic competence in larvae of the dendronotid nudibranchs Melibe leonina and Tritonia diomedea. Microsc.Res.Tech., 2008.
  40. H. N. Kingsley, C. P. Lynn, D. J. Fickbohm, and P. S. Katz. Immunohistochemical localization of the serotonin precursor 5-HTP shows some dissociation from 5-HT immunostaining in two molluscs. Soc.Neurosci.Abstr. 25:168, 1999.
  41. D. Kleinfeld and H. Sompolinsky. Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators [published erratum appears in Biophys J 1989 Mar;55(3):following 583]. Biophys.J. 54 (6):1039-1051, 1988.
  42. I. V. Krasts and B. N. Veprintsev. The giant neurons of Tritonia: its electric properties and the ionic dependence of the action potential. Comp Biochem.Physiol A 41 (2):289-296, 1972.
  43. Lee AH, Megalou EV, Wang J, Frost WN. Axonal conduction block as a novel mechanism of prepulse inhibition. J Neurosci. 2012 Oct 31;32(44):15262-70. doi: 10.1523/JNEUROSCI.0160-12.2012.[1][aid]&cmd=DetailsSearch PubMed ID: 23115164].
  44. P. R. Lennard, P. A. Getting, and R. I. Hume. Central pattern generator mediating swimming in Tritonia. II. Initiation, maintenance, and termination. J.Neurophysiol. 44:165-173, 1980.
  45. J. L. Lillvis, A. B. Kohn, F. Yu, R. Shaw, W. Farmerie, L. L. Moroz, and P. S. Katz. Neuropeptide gene expression patterns in the gastropod mollusc, Tritonia diomedea. Society for Neuroscience, San Diego, CA. 140.8, 2007.
  46. P. E. Lloyd, B. P. Masinovsky, and A. O. D. Willows. Multiple transmitter neurons in Tritonia. I. Biochemical studies. J.Neurobiol. 19:39-54, 1988.
  47. P. E. Lloyd and A. O. D. Willows. Multiple transmitter neurons in Tritonia. II. Control of gut motility. J.Neurobiol. 19:55-67, 1988.
  48. P. E. Lloyd, G. A. Phares, N. E. Phillips, and A. O. D. Willows. Purification and sequencing of neuropeptides from identified neurons in the marine mollusc, Tritonia. Peptides 17 (1):17-23, 1996.
  49. K. J. Lohmann and A. O. Willows. Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235 (4786):331-334, 1987.
  50. K. J. Lohmann, A. O. Willows, and R. B. Pinter. An identifiable molluscan neuron responds to changes in earth- strength magnetic fields. J.Exp.Biol. 161:1-24, 1991.
  51. R. D. Longley and A. O. D. Willows. Immunocytochemical localization of serotonin, FMRFamide, BPP, and SCPB in nudibranch mollusks. Soc.Neurosci.Abstr. 11:943, 1985.
  52. R. D. Longley and A. J. Longley. Evolution of behavior: An homologous peptidergic escape swim interneuron in swimming gastropod nudibranchs (Tritonia, Hermissenda) and a related non-swimming species (Aeolidia). Soc.Neurosci.Abstr. 13:822, 1987.
  53. R. D. Longley. Morphological variability in the gastroesophageal ganglion of the nudibranch Tritonia diomedia [sic]. The Veliger 34:291-296, 1991.
  54. A. Y. Malyshev, T. P. Norekian, and A. O. Willows. Differential effects of serotonergic and peptidergic cardioexcitatory neurons on the heart activity in the pteropod mollusc, Clione limacina. J.Comp Physiol [A] 185 (6):551-560, 1999.
  55. M. S. Manokhina. [Cytochemical study of giant neurons of Tritonia diomedia Bergh. 1. Nucleic acids, proteins, polysaccharides and lipids]. Arkh.Anat.Gistol.Embriol. 50 (5):93-100, 1966.
  56. M. S. Manokhina and L. V. Kuz'mina. Distribution of biogenic monoamines in the central nervous system of the Pacific nudibranch mollusc Tritonia sp. J.Evol.Biochem.Physiol. 7:296-301, 1971.
  57. M. S. Manokhina and L. V. Kuz'mina. Biogenic monoamines in the central nervous system of mollusk Tritonia sp. Zh.Evol.Biokhim.Fiziol. 7:357-361, 1971.
  58. E. d. B. R. Marcus. The western Atlantic Tritoniidae. Bol.Zool. 6:177-214, 1983.
  59. M. G. Martynova. Nudipleura. In: Marine and brackish water Gastropoda of Russia and adjacent countries: an illustrated catalogue, edited by Y. I. Kantor and A. V. Sysoev, Moscow: KMK Scientific Press Ltd, 2006, p. 267-294.
  60. B. Masinovsky, P. E. Lloyd, and A. O. Willows. Morphology of two pairs of identified peptidergic neurons in the buccal ganglia of the mollusc Tritonia diomedea. J.Neurobiol. 16 (1):27-39, 1985.
  61. B. Masinovsky, S. C. Kempf, J. C. Callaway, and A. O. D. Willows. Monoclonal antibodies to the molluscan small cardioactive peptide SCPB: immunolabeling of neurons in diverse invertebrates. J.Comp Neurol. 273 (4):500-512, 1988.
  62. K. P. Mauzey, C. Birkeland, and P. K. Dayton. Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49 (4):603-619, 1968.
  63. M. W. McCaman, D. Weinreich, and R. E. McCaman. The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, Tritonia and leech nervous tissues. Brain Res. 53 (1):129-137, 1973.
  64. M. W. McCaman, R. E. McCaman, and J. Stetzler. A rapid radioenzymatic assay for dopamine and N-acetyldopamine. Anal.Biochem. 96:175-180, 1979.
  65. M. W. McCaman, J. K. Ono, and R. E. McCaman. 5-Hydroxytryptamine measurements in molluscan ganglia and neurons using a modified radioenzymatic assay. J.Neurochem. 43:91-99, 1984.
  66. A. D. McClellan, G. D. Brown, and P. A. Getting. Modulation of swimming in Tritonia: Excitatory and inhibitory effects of serotonin. J.Comp.Physiol.A 174:257-266, 1994.
  67. N. Mclean and D. Porter. The yellow spot disease of Tritonia diomedea (Mollusca: Gastropoda: Nudibranchia): Encapsulation of the thraustochytriaceous parasite by host amoebocytes. J.Parasitology 68:243-252, 1982.
  68. N. Mclean. Morphological evidence for self-encapsulation and -encystment in Tritonia diomedea (Mollusca: Gastropoda: Nudibranchia). Transactions of the American Microscopical Society 107 (2):180-189, 1988.
  69. E. V. Megalou, C. J. Brandon, and W. N. Frost. Evidence that the swim afferent neurons of tritonia diomedea are glutamatergic. Biol.Bull. 216 (2):103-112, 2009.
  70. M. C. Miller. Annual Cycles of Some Manx Nudibranchs, with a Discussion of the Problem of Migration. Journal of Animal Ecology 31 (3):545-569, 1962.
  71. D. L. Mongeluzi, T. A. Hoppe, and W. N. Frost. Prepulse Inhibition of the Tritonia Escape Swim. J.Neurosci. 18 (20):8467-8472, 1998.
  72. D. L. Mongeluzi and W. N. Frost. Dishabituation of the Tritonia escape swim. Learn.Mem. 7 (1):43-47, 2000.
  73. L. L. Moroz and R. Gillette. From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signalling in mollusca. Acta Biol.Hung. 46 (2-4):169-182, 1995.
  74. L. L. Moroz and R. Gillette. NADPH-diaphorase localization in the CNS and peripheral tissues of the predatory sea-slug Pleurobranchaea californica. J.Comp.Neurol. 367 (4):607-622, 1996.
  75. L. L. Moroz, L. C. Sudlow, J. Jing, and R. Gillette. Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J.Comp.Neurol. 382 (2):176-188, 1997.
  76. J. A. Murray, R. S. Hewes, and A. O. D. Willows. Water-flow sensitive pedal neurons in Tritonia: Role in rheotaxis. J.Comp.Physiol.A 171:373-385, 1992.
  77. J. A. Murray and A. O. D. Willows. Function of identified nerves in orientation to water flow in Tritonia diomedea. J.Comp.Physiol.A 178 (2):201-209, 1996.
  78. J. A. Murray, J. Estepp, and S. D. Cain. Advances in the neural bases of orientation and navigation. Integrative and Comparative Biology 46 (6):871-879, 2006.

N - Z

  1. J. M. Newcomb and P. S. Katz. Homologous serotonergic neurons in two molluscan species differentially participate in analogous locomotor behaviors. Soc.Neurosci.Abstr. 29:403.7, 2003.
  2. J. M. Newcomb, D. J. Fickbohm, and P. S. Katz. Comparative mapping of serotonin-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol. 499 (3):485-505, 2006.
  3. J. M. Newcomb and P. S. Katz. Homologues of serotonergic central pattern generator neurons in related nudibranch molluscs with divergent behaviors. J.Comp Physiol [A] 193 (4):425-443, 2007.
  4. J. M. Newcomb and P. S. Katz. Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours. Proc.R.Soc.B. 276 (1674):99-108, 2009.
  5. P. S. Pallas. Marina varia nova et rariora. Nova Acta Acad.Sci.Imp.Petrop. 2:229-250, 1788.
  6. G. A. Pavlova, A. O. Willows, and M. R. Gaston. Serotonin inhibits ciliary transport in esophagus of the nudibranch mollusk Tritonia diomedea. Acta Biol.Hung. 50 (1-3):175-184, 1999.
  7. G. A. Pavlova and A. O. Willows. Immunological localization of Tritonia peptide in the central and peripheral nervous system of the terrestrial snail Helix aspersa. J Comp Neurol. 491 (1):15-26, 2005.
  8. G. A. Pavlova, R. M. Glantz, and A. O. Dennis Willows. Responses to magnetic stimuli recorded in peripheral nerves in the marine nudibranch mollusk Tritonia diomedea. J.Comp Physiol A Neuroethol.Sens.Neural Behav.Physiol, 2011. h[ttp://www.ncbi.nlm.nih.gov/pubmed/21717186 21717186]
  9. R. E. Plant. Temporal pattern generation in coupled oscillators: A model for the Tritonia trigger group. Math.Biosci. 43:239-263, 1979.
  10. I. R. Popescu and A. O. D. Willows. Sources of magnetic sensory input to identified neurons active during crawling in the marine mollusc Tritonia diomedea. J.Exp.Biol. 202 (21):3029-3036, 1999.
  11. I. R. Popescu and W. N. Frost. One circuit for two types of locomotion in Tritonia diomedea. Soc.Neurosci.Abstr., 2000.
  12. I. R. Popescu and W. N. Frost. Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea. J.Neurosci. 22 (5):1985-1993, 2002.
  13. L. B. Popova and P. S. Katz. Serotonin responses of acutely isolated identified neurons from the Tritonia swim CPG. Soc.Neurosci.Abstr. 24:358, 1998.
  14. L. B. Popova and P. S. Katz. The effects of 5-HT on acutely isolated serotonergic Tritonia swim CPG neurons. Soc.Neurosci.Abstr. 270.12, 2002.
  15. R. L. Redondo and J. A. Murray. Pedal neuron 3 serves a significant role in effecting turning during crawling by the marine slug Tritonia diomedea (Bergh). J.Comp Physiol [A] 191 (5):435-444, 2005.
  16. R. L. Redondo and J. A. Murray. Pedal neuron 3 serves a significant role in effecting turning during crawling by the marine slug Tritonia diomedea (Bergh). J.Comp.Physiol A 191 (5):435-444, 2005.
  17. D. A. Sakharov, V. L. Borovyagin, and I. Z. Nagy. Light, fluorescence and electron microscopic studies on "neurosecretion" in Tritonia diomedia bergh (Mollusca, Nudibranchia). Z.Zellforsch.Mikrosk.Anat. 68 (5):660-673, 1965.
  18. A. Sakurai and P. S. Katz. Serotonergic interneurons in Tritonia evoke a biphasic neuromodulatory action. Soc.Neurosci.Abstr. 270.13, 2002.
  19. A. Sakurai and P. S. Katz. Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. J.Neurosci. 23 (34):10745-10755, 2003.
  20. A. Sakurai, N. R. Darghouth, R. J. Butera, and P. S. Katz. Serotonergic enhancement of a 4-AP-sensitive current mediates the synaptic depression phase of spike timing-dependent neuromodulation. J.Neurosci. 26 (7):2010-2021, 2006.
  21. A. Sakurai, R. J. Calin-Jageman, and P. S. Katz. The potentiation phase of spike timing-dependent neuromodulation by a serotonergic interneuron involves an increase in the fraction of transmitter release. J.Neurophysiol. 98 (4):1975-1987, 2007.
  22. A. Sakurai and P. S. Katz. State-, timing-, and pattern-dependent neuromodulation of synaptic strength by a serotonergic interneuron. J.Neurosci. 29 (1):268-279, 2009.
  23. A. Sakurai and P. S. Katz. Functional recovery after lesion of a central pattern generator. J.Neurosci 29 (42):13115-13125, 2009. 19846699
  24. M. T. Slawsky. Presynaptic inhibition in the marine mollusk, Tritonia diomedea. Thesis, Stanford University, 1979.
  25. S. J. Smith and S. H. Thompson. Slow membrane currents in bursting pace-maker neurones of Tritonia. J.Physiol 382:425-448, 1987.
  26. V. G. Smith and T. M. Gosliner. A new species of Tritonia from Okinawa (Mollusca: Nudibranchia), and its association with a gorgonian octocoral. Proceedings of the California Academy of Sciences 54 (9-21):255-278, 2003.
  27. R. W. Snow. Synaptic physiology and pharmacology of an identified interneuron in Tritonia diomedia [sic], Ph.D. Thesis University of Washington, 1978.
  28. R. W. Snow. Characterization of the synaptic actions of an interneuron in the central nervous system of Tritonia. J.Neurobiol. 13:251-266, 1982.
  29. R. W. Snow. Evidence for peptide-mediated neurotransmission in a molluskan brain. J.Neurobiol. 13:267-277, 1982.
  30. R. R. Strathmann and E. Leise. ON FEEDING MECHANISMS AND CLEARANCE RATES OF MOLLUSCAN VELIGERS. Biol.Bull. 157:524-535, 1979.
  31. L. C. Sudlow, J. Jing, L. L. Moroz, and R. Gillette. Serotonin immunoreactivity in the central nervous system of the marine molluscs Pleurobranchaea californica and Tritonia diomedea. J.Comp.Neurol. 395 (4):466-480, 1998.
  32. P. H. Taghert and A. O. D. Willows. Control of a fixed action pattern by single, central neurons in the marine mollusk, Tritonia diomedea. J.Comp.Physiol. 123:253-259, 1978.
  33. S. Thompson. Aminopyridine block of transient potassium current. J.Gen.Physiol. 80:1-18, 1982.
  34. S. Thompson, S. J. Smith, and J. W. Johnson. Slow outward tail currents in molluscan bursting pacemaker neurons: two components differing in temperature sensitivity. J.Neurosci 6 (11):3169-3176, 1986.
  35. S. H. Thompson. Three pharmacologically distinct potassium channels in molluscan neurones. J.Physiol (Lond) 265 (2):465-488, 1977.
  36. T. E. Thompson. Studies on the Ontogeny of Tritonia hombergi Cuvier (Gastropoda Opisthobranchia). Phil.Trans.Roy.Soc.B 245 (722):171-218, 1962.
  37. M. J. Tunstall, P. S. Katz, and W. N. Frost. A revised model of the Tritonia escape swim CPG suggests a role for intrinsic neuromodulation and predicts a missing neuron in the CPG network. In: Nervous Systems and Behavior: Proceedings of the 4th International Congress of Neuroethology, edited by M. Burrows, T. Matheson, P. L. Newland, and H. Schuppe, Stuttgart:Georg Thieme Verlag, 1995, p. 180.
  38. M. J. Tunstall, P. S. Katz, and W. N. Frost. A revised model of the Tritonia swim CPG suggests a role for intrinsic neuromodulation and predicts missing neurons. Soc.Neurosci.Abstr. 21 (1):146, 1995.
  39. B. N. Veprintsev, I. V. Krasts, and D. A. Sakharov. (NERVE CELLS OF TRITONIA DIOMEDIA BERGH.). Biofizika 9:327-336, 1964.
  40. Maria Von Linden. Observations on the ontogeny of some local Tritonia. Jahreshefte-der-Gesellschaft-fuer-Naturkunde-in-Wuerttemberg. 149:641-645, 1994.
  41. H. Waegele. The morphology and taxonomy of the Antarctic species of Tritonia Cuvier, 1797 (Nudibranchia: Dendronotoidea). Zoological-Journal-of-the-Linnean-Society. 113:21-46, 1995.
  42. J. H. Wang, S. D. Cain, and K. J. Lohmann. Identification of magnetically responsive neurons in the marine mollusc Tritonia diomedea. J.Exp.Biol. 206 (2):381-388, 2003.
  43. J. H. Wang, S. D. Cain, and K. J. Lohmann. Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea. J.Exp.Biol. 207 (6):1043-1049, 2004.
  44. W. H. Watson and A. O. D. Willows. Evidence for homologous peptidergic neurons in the buccal ganglia of diverse nudibranch mollusks. J.Neurobiol. 23:173-186, 1992.
  45. D. Weinreich, M. W. McCaman, R. E. McCaman, and J. E. Vaughn. Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine-containing neurons from the ganglia of Aplysia californica and Tritonia diomedia [sic]. J.Neurochem. 20:969-976, 1973.
  46. K. E. Whalen, E. E. Sotka, J. V. Goldstone, and M. E. Hahn. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comp Biochem.Physiol C.Toxicol.Pharmacol. 152 (3):288-300, 2010.
  47. A.-O. D. Willows, G. A. Pavlova, and N. E. Phillips. Effect of Tritonia neuropeptides and serotonin on ciliary activity. Dokl.Akad.Nauk 358 (6):839-841, 1998.
  48. A. O. Willows. Behavioral acts elicited by stimulation of single, identifiable brain cells. Science 157 (788):570-574, 1967.
  49. A. O. Willows, L. A. Nikitina, V. V. Bezuglov, N. M. Gretskaia, and G. A. Buznikov. [The possible functional interaction of serotonin and neuropeptides in embryogenic regulatory processes (experiments on embryos of the mollusk Tritona diomedea)]. Ontogenez 31 (2):132-138, 2000.
  50. A. O. D. Willows and G. Hoyle. Correlation of behavior with the activity of single identifiable neurons in the brain of Tritonia. In: Neurobiology of Invertebrates, edited by J. Salanki, New York:Plenum Press, 1968, p. 443-461.
  51. A. O. D. Willows. Behavioral acts elicited by stimulation of single identifiable nerve cells. In: Physiology and Beochemical Aspects of Nervous Integration, edited by F. D. Carlson, Englewood Cliffs, NJ:Prentice Hall, 1968, p. 217-244.
  52. A. O. D. Willows and G. Hoyle. Neuronal network triggering of fixed action pattern. Science 166:1549-1551, 1969.
  53. A. O. D. Willows, D. A. Dorsett, and G. Hoyle. The neuronal basis of behavior in Tritonia. I. Functional organization of the central nervous system. J.Neurobiol. 4:207-237, 1973.
  54. A. O. D. Willows, D. A. Dorsett, and G. Hoyle. The neuronal basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern. J.Neurobiol. 4:255-285, 1973.
  55. A. O. D. Willows and D. A. Dorsett. Evolution of swimming behavior in Tritonia and its neurophysiological correlates. J.Comp.Physiol. 100:117-133, 1975.
  56. A. O. D. Willows. Trigger neurons in the Mollusk Tritonia. In: Neural Control of Locomotion, edited by R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart, New York:Plenum Press, 1976, p. 327-349.
  57. A. O. D. Willows. Physiological basis of feeding behavior in Tritonia diomedea. II. Neuronal mechanisms. J.Neurophysiol. 44 (5):849-861, 1980.
  58. A. O. D. Willows, P. E. Lloyd, and B. P. Masinovsky. Multiple transmitter neurons in Tritonia. III. Modulation of central pattern generator controlling feeding. J.Neurobiol. 19:69-86, 1988.
  59. A. O. D. Willows, G. A. Pavlova, and N. E. Phillips. Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J.Exp.Biol. 200 (10):1433-1439, 1997.
  60. A. O. D. Willows, L. A. Nikitina, V. Bezuglov, V, N. M. Gretskaya, and G. A. Buznikov. About possible functional interaction between serotonin and neuropeptides in control processes of embryogenesis (Experiments on embryos of Tritonia diomedea). Ontogenez 31 (2):132-138, 2000.
  61. A. O. D. Willows. Costs and benefits of opisthobranch swimming and neurobehavioral mechanisms. Am.Zool. 41 (4):943-951, 2001.
  62. O. M. Woodward and A. O. Willows. Dopamine modulation of Ca2+ dependent Cl- current regulates ciliary beat frequency controlling locomotion in Tritonia diomedea. J.Exp.Biol. 209 (Pt 14):2749-2764, 2006.
  63. O. M. Woodward and A. O. Willows. Nervous control of ciliary beating by Cl-, Ca2+ and calmodulin in Tritonia diomedea. J.Exp.Biol. 209 (Pt 14):2765-2773, 2006.
  64. R. C. Wyeth and A. O. Willows. Odours detected by rhinophores mediate orientation to flow in the nudibranch mollusc, Tritonia diomedea. J Exp.Biol. 209 (Pt 8):1441-1453, 2006.
  65. R. C. Wyeth and A. O. Willows. Adaptation of underwater video for near-substratum current measurement. Biol.Bull. 211 (2):101-105, 2006.
  66. R. C. Wyeth and A. O. Willows. Field behavior of the nudibranch mollusc Tritonia diomedea. Biol.Bull. 210 (2):81-96, 2006.
  67. R. C. Wyeth, O. M. Woodward, and A. O. Willows. Orientation and navigation relative to water flow, prey, conspecifics, and predators by the nudibranch mollusc Tritonia diomedea. Biol.Bull. 210 (2):97-108, 2006.
  68. R. C. Wyeth, R. P. Croll, A. O. Willows, and Spencer4 AN. 1-Phenoxy-2-propanol is a useful anaesthetic for gastropods used in neurophysiology. J.Neurosci Methods, 2008.
  69. R. C. Wyeth. Should animals navigating over short distances switch to a magnetic compass sense? Front Behav.Neurosci 4, 2010. 20740070